Tetrahedron Letters 50 (2009) 5733-5736

Contents lists available at ScienceDirect

**Tetrahedron Letters** 

journal homepage: www.elsevier.com/locate/tetlet





# Hydrogen peroxide mediated formation of heteroaryl ethers from pyridotriazol-1-yloxy heterocycles and arylboronic acids

Sujata Bardhan<sup>a</sup>, Keiko Tabei<sup>a</sup>, Zhao-Kui Wan<sup>b</sup>, Tarek S. Mansour<sup>a,\*</sup>

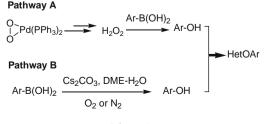
<sup>a</sup> Chemical Sciences, Wyeth Research, 401 N. Middletown Road, Pearl River, NY 10965, United States
 <sup>b</sup> Chemical Sciences, Wyeth Research, 200 Cambridge Park Drive, Cambridge, MA 02140, United States

# ARTICLE INFO

Article history: Received 6 July 2009 Revised 24 July 2009 Accepted 27 July 2009 Available online 6 August 2009

## ABSTRACT

Pyridotriazol-1-yloxypyrimidine **3** reacts with arylboronic acids under palladium-free,  $Cs_2CO_3$ , (0.8%)  $H_2O_2$ , and DME conditions to produce heteroaryl ethers **4–16** in good yields comparable to the oxidative palladium-catalyzed reaction. The yields of aryl ethers **17–19** from quinazoline **2** with (0.8%)  $H_2O_2$  were modest. Hydrogen peroxide is superior to dioxygen as an oxidant in these reactions.


© 2009 Elsevier Ltd. All rights reserved.

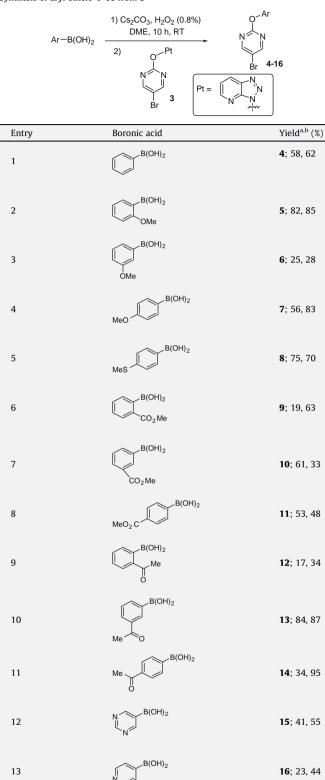
Recently, we have reported on the synthetic versatility of phosphonium-mediated S<sub>N</sub>Ar reactions of biologically important heterocyles<sup>1,2</sup> using BOP reagents.<sup>3,4</sup> Mechanistic studies regarding the nature of the intermediates in these reactions using <sup>31</sup>P NMR and ESI MS techniques are consistent with a pathway involving stepwise formation of heterocyclic benzotriazol-yloxy adducts from the phosphonium intermediates.<sup>5</sup> In this regard, benzotriazolyloxy quinazoline 1 and other thienopyrimidine heterocycles readily reacted with various nucleophiles in S<sub>N</sub>Ar fashion.<sup>5</sup> Moreover, since the benzotriazol-yloxy and pyridotriazol-1-yloxy (OPt) adducts are more stable than the corresponding phosphonium intermediates, further investigations of the reactions of **2** and **3** (Eq. 1) under oxidative palladium-catalyzed conditions  $(Pd(PPh_3)_4, O_2, O_3)$ Cs<sub>2</sub>CO<sub>3</sub>, and DME-H<sub>2</sub>O) with arylboronic acids led to the unexpected formation of heteroaryl ethers.<sup>6,7</sup> This transformation is synthetically valuable especially in cases where phenols are not readily available for S<sub>N</sub>Ar type reactions and is unique compared to the homocoupling reactions in metal-catalyzed reactions in that unsymmetrical ether compounds are obtained instead of biaryls.<sup>8,9</sup>

Mechanistic studies on the oxidative palladium-catalyzed reaction of **2** using labeled dioxygen ( $^{18}O_2$ ) led to the conclusion that the ether oxygen is derived from phenols which are generated from two sources: oxidative Pd catalyzed pathway A ( $H_2O_2$  via  $O_2$ ) and a non-palladium-mediated pathway B involving  $Cs_2CO_3$ and arylboronic acid (Scheme 1). While the contribution of each pathway to the formation of phenols and eventually heteroaryl ethers was not explored, the latter pathway was unexpected and does not seem to depend solely on dioxygen.

The roles of the Pd(0) catalyst and dioxygen in pathway A were conceived to provide a source of  $H_2O_2$  in situ, which in turn forms phenols in situ. Assuming that quinazolines<sup>6</sup> and pyrimidines<sup>7</sup> OPt adducts react similarly in the oxidative palladium reaction, we explored further the transformation of OPt adducts **2** and **3** to hetero-aryl ethers using arylboronic acids and  $(0.6-1\%) H_2O_2$  as an oxidant without Pd(0) catalyst. Conceptually, this seemed as an attractive strategy to probe further the synthetic utility of this transformation and its possible mechanistic implications. In this Letter, we report our results on the reaction of **2** and **3** with arylboronic acids mediated by  $H_2O_2$  as an oxidant.

The reaction of arylboronic acids with pyrimidine **3** under  $Cs_2CO_3$ , (0.8%)  $H_2O_2$ , and DME conditions led to aryl ethers in variable yields (Table 1). Aryl ethers generated from arylboronic acids in entries 4, 6, and 11 are formed in substantially lower yields than those from the oxidative palladium-catalyzed reaction<sup>7</sup> while aryl ether **10** was formed in higher yields under the palladium-free conditions. The isolated yields obtained with arylboronic acids in






<sup>\*</sup> Corresponding author. Tel.: +1 845 602 3668; fax: +1 845 602 5580. *E-mail address:* mansout@wyeth.com (T.S. Mansour).

<sup>0040-4039/\$ -</sup> see front matter @ 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2009.07.135

#### Table 1

Synthesis of aryl ethers 4-16 from 3

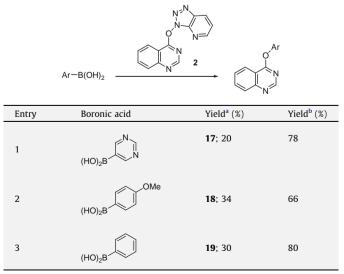


 $^{a}$  Based on isolated products, average of 2–3 experiments Cs2CO3, (0.8%) H2O2, and DME.

<sup>b</sup> Pd(PPh<sub>3</sub>)<sub>4</sub>, O<sub>2</sub>, Cs<sub>2</sub>CO<sub>3</sub>, and DME-H<sub>2</sub>O).

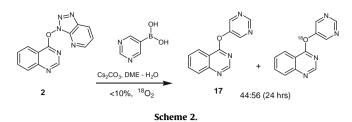
entries 1, 2, 5, 8, 10, and 12 are comparable to those obtained by the oxidative palladium-catalyzed reaction employing the same arylboronic acids<sup>7</sup> and attest to the synthetic potential of this transformation. Although the yields for aryl ethers in entries 3, 9, and 13 are relatively low, they are however, comparable to those obtained by the oxidative palladium conditions.

Therefore, in the case of pyrimidine **3** and in reference to the mechanistic proposal outlined in Scheme 1, the formation of aryl ethers under  $Cs_2CO_3$ , (0.8%)  $H_2O_2$ , and DME conditions in entries 1–3, 5, 7–10, 12, and 13 competes well with the oxidative palladium-catalyzed reaction.<sup>7</sup> This finding suggests an attractive synthesis of heteroaryl ethers under palladium-free conditions.


Quinazoline **2** which was previously shown to furnish aryl ethers under Pd(0) conditions, led to the formation of aryl ethers **17–19** with 5-pyrimidinyl, *p*-methoxyphenyl, and phenylboronic acids, respectively under the new H<sub>2</sub>O<sub>2</sub> conditions (Table 2). The lower yields of ethers **17–19** compared to those obtained by the oxidative palladium-catalyzed reaction suggest that the latter transformation<sup>6</sup> is a superior method for forming quinazoline heteroaryl ethers compared to the palladium-free H<sub>2</sub>O<sub>2</sub> conditions.

Having established a differential in reactivity between **2** and **3** under the palladium-free conditions, it became necessary to evaluate the extent of pathway B (Scheme 1) contributions in the oxidative palladium-catalyzed reaction. To compliment our earlier mechanistic studies,<sup>6</sup> quinazoline **2** was reacted with 5-pyr-imidinylboronic acid under  $Cs_2CO_3$ , <sup>18</sup>O<sub>2</sub>, and DME–H<sub>2</sub>O conditions without the Pd(0) catalyst and the ratio of incorporation of <sup>18</sup>O into the ether product **17** was monitored with time using ESI/MS techniques. After 24 h, the conversion to the ether product amounted to <10% with a ratio of <sup>16</sup>O:<sup>18</sup>O being 44:56 (Scheme 2). The low conversion is also consistent with that obtained using dioxygen and suggests that pathway B is minor relative to pathway A in the oxidative palladium-catalyzed reaction. Similarly, the preparation of aryl ethers **4**, **7**, and **14** (Table 1 entries 1, 4, and 11) from **3** proceeds in low yields (10–27%) under Cs<sub>2</sub>CO<sub>3</sub>, O<sub>2</sub>, and DME–H<sub>2</sub>O conditions.

To account for differences between the palladium-free  $H_2O_2$  conditions and oxidative palladium-catalyzed conditions,<sup>6</sup> it would seem plausible to suggest that the choice of arylboronic acid plays a significant role in the formation of phenols from  $H_2O_2$  as in the palladium-free conditions or pathway A in the oxidative palladium reaction<sup>6</sup> since the hydrolysis of ArPdOOB(OH)<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub> produces


### Table 2

Synthesis of aryl ethers from **2** 



 $<sup>^{</sup>a}$  Based on isolated products, average of 2–3 experiments Cs2CO3, (0.8%) H2O2, and DME.

<sup>b</sup> Pd(PPh<sub>3</sub>)<sub>4</sub>, O<sub>2</sub>, Cs<sub>2</sub>CO<sub>3</sub>, and DME-H<sub>2</sub>O).



 $H_2O_2$  and  $ArPd(OH)(PPh_3)_2$ .<sup>6,10</sup> Excess arylboronic acid can, however, be consumed in the palladium-catalyzed reaction by transmetalation of  $ArPd(OH)(PPh_3)_2$  leading to  $Ar_2Pd(PPh_3)_2$  and its reductive elimination to the homocoupling product Ar-Ar.<sup>10</sup>

Although the conversion of arylboronic acids to phenols has been previously reported to proceed with 30%  $H_2O_2^{11}$  or other oxidants such as perborate,<sup>12</sup> hydroxylamine,<sup>13</sup> and oxone, <sup>14,15</sup> limitations of these methods have been reported.<sup>10,16,17</sup> Experimentally, we aimed at using a low concentration of hydrogen peroxide (<1%) for comparative purposes with the oxidative palladium-catalyzed reaction<sup>5–7</sup> since in this case higher concentrations were inhibitory to the formation of heteroaryl ethers.<sup>6,7</sup> The experimental procedure adopted under the palladium-free conditions is a one-pot, two-step sequence involving oxidation of arylboronic acids with (0.8–1%) hydrogen peroxide followed by the addition of the OPt heterocycle **2** or **3**.

In conclusion, the reaction of arylboronic acids with OPt heterocycles **2** and **3** under  $Cs_2CO_3$ , (0.8%)  $H_2O_2$ , and DME conditions produces heteroaryl ethers in good synthetic yields and is superior to that involving  $Cs_2CO_3$ ,  $O_2$ , and DME– $H_2O$  conditions. Comparative studies between quinazoline **2** and pyrimidine **3** indicate that the palladium-free  $Cs_2CO_3$ , (0.8%)  $H_2O_2$ , and DME conditions produce heteroaryl ethers **4–16** in yields comparable to that of the palladium-catalyzed conditions (Pd(PPh\_3)\_4,  $O_2$ ,  $Cs_2CO_3$ , and DME– $H_2O$ ) in the case of **3**. However, for quinazoline **2** the palladium-catalyzed process is more efficient.

This new transformation complements the direct  $S_NAr$  with phenols<sup>5,18,19</sup> and competes well with the oxidative palladium-catalyzed reaction.<sup>6,7</sup> The relative simplicity in eliminating palladium metal and dioxygen and employing  $H_2O_2$  as an oxidant makes it an attractive consideration for the synthesis of heteroaryl ethers. This reaction strongly highlights on the complexity in understanding the reaction pathways in these oxidative transformations.<sup>20</sup>

## Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.tetlet.2009.07.135.

## **References and notes**

- (a) Wan, Z.-K.; Binnum, E.; Wilson, D. P.; Lee J. Org. Lett. 2005, 7, 5877–5880; (b) Levins, C. G.; Wan, Z.-K. Org. Lett. 2008, 10, 1755–1758.
- Wan, Z.-K.; Wacharasindhu, S.; Binnum, E.; Mansour, T. Org. Lett. 2006, 8, 2425– 2428.
- PyAOP Alsina, J.; Giralt, E.; Albericio, F. *Tetrahedron Lett.* **1996**, 37, 4195–4198; BOP reagents: (a) Coste, J.; Frerot, E.; Jouin, P.; Castro, B. *Tetrahedron Lett.* **1991**, 32, 1967–1970; (b) Srivastava, T. K.; Haq, W.; Bhanumati, S.; Velmurugan, D.; Sharma, U.; Jagannathan, N. R.; Katti, S. B. *Protein Peptide Lett.* **2001**, 8, 39–44.
- (a) Kang, F.-A.; Sui, Z.; Murray, W. V. J. Am. Chem. Soc. 2008, 130, 11300–11302;
  (b) Kang, F.-A.; Sui, Z.; Murray, W. V. Eur. J. Org. Chem. 2009, 461–479.
- Wan, Z.-K.; Wacharasindhu, S.; Levins, C.; Lin, M.; Tabei, K.; Mansour, T. S. J. Org. Chem. 2007, 72, 10194–10210.
- Wacharasindhu, S.; Bardhan, S.; Wan, Z.-K.; Tabei, K.; Mansour, T. S. J. Am. Chem. Soc. 2009, 131, 4174–4175.
- Bardhan, S.; Wacharasindhu, S.; Wan, Z.-K.; Mansour, T. S. Org. Lett. 2009, 11, 2511–2514.
- (a) Yang, S.-D.; Sun, C.-L.; Fang, Z.; Li, B.-J.; Li, Y.-Z.; Shi, Z.-J. Angew. Chem., Int. Ed. 2008, 47, 1473–1476; (b) Ban, I.; Sudo, T.; Taniguchi, T.; Itami, K. Org. Lett. 2008, 10, 3607–3609; (c) Xu, Z.; Mao, J.; Zhang, Y. Catal. Commun. 2007, 9, 97–

100; (d) Delcamp, J. H.; White, M. C. J. Am. Chem. Soc. **2006**, *128*, 15076–15077; (e) Popp, B. V.; Stahl, S. S. J. Am. Chem. Soc. **2006**, *128*, 2804–2805; (f) Yamamoto, Y.; Suzuki, R.; Hattori, K.; Nishiyama, H. Synlett **2006**, 1027–1030; (g) Gonzalez-Arellano, C.; Corma, A.; Iglesias, M.; Sanchez, F. Chem. Commun. **2005**, *15*, 1990–1992; (h) Hatamoto, Y.; Sakaguchi, S.; Ishii, Y. Org. Lett. **2004**, 6, 4623–4625; (i) Stahl, S. S. Angew. Chem., Int. Ed. **2004**, 43, 3400–3420; (j) Yoshida, H.; Yamaryo, Y.; Ohshita, J.; Kunai, A. Tetrahedron Lett. **2003**, *44*, 1541– 1544; (k) Parrish, J. P.; Jung, Y. C.; Floyd, R. J.; Jung, K. W. Tetrahedron Lett. **2002**, 43, 7899–7902.

- Methods for synthesis of unsymmetrical biaryls have been reported: (a) Vogler, T.; Studer, A. Org. Lett. 2008, 10, 129–131; (b) Alessi, M.; Larkin, A. L.; Ogilvie, K. A.; Green, L. A.; Lai, S.; Lopez, S.; Snieckus, V. C. J. Org. Chem. 2007, 72, 1588– 1594; (c) Kianmehr, E.; Yahyaee, M.; Tabatabai, K. Tetrahedron Lett 2007, 48, 2713–2715; (d) Demir, A. S.; Reis, O.; Emrullahoglu, M. J. Org. Chem. 2003, 68, 578–580.
- (a) Adamo, C.; Amatore, C.; Ciofini, I.; Jutand, A.; Lakmini, H. J. Am. Chem. Soc. 2006, 128, 6829–6836; (b) Keith, J. M.; Nielsen, R. J.; Oxgaard, J.; Goddard, W. A., III J. Am. Chem. Soc. 2005, 127, 13172–13179; (c) Denney, M. C.; Smythe, N. A.; Cetto, K. L.; Kemp, R. A.; Goldberg, K. I. J. Am. Chem. Soc. 2006, 128, 2508– 2509.
- 11. Simon, J.; Salzbrunn, S.; Prakash, G. K. S.; Petasis, N. A.; Olah, G. A. J. Org. Chem. 2001, 66, 633–634.
- (a) Nanni, E. J.; Sawyer, D. T., Jr. J. Am. Chem. Soc. 1980, 102, 7591–7593; (b) Fontani, P.; Carboni, B.; Vaultier, M.; Maas, G. Synthesis 1991, 605–609.
- 13. Kianmehr, E.; Yahyaee, M.; Tabatabai, K. Tetrahedron Lett. 2007, 48, 2713–2715.
- 14. Webb, K. S.; Levy, D. Tetrahedron Lett. **1995**, 36, 5117–5118.
- 15. Lee, Y.; Kelly, M. J. Tetrahedron Lett. 2006, 47, 4897-4901.
- Dickie, D. A.; MacIntosh, I. S.; Ino, D. D.; He, Q.; Labeodan, O. A.; Jennings, M. C.; Schatte, G.; Walsby, C. J.; Clyburne, J. A. C. *Can. J. Chem.* **2008**, *86*, 20–31.
- 17. Kilitoglu, B.; Arndt, H.-D. Synlett 2009, 720-723.
- 18. Bae, S.; Lakshman, M. K. J. Org. Chem. 2008, 73, 1311-1319.
- 19. Bae, S.; Lakshman, M. K. J. Am. Chem. Soc. 2007, 129, 1782-1789.
- 20. 5-Bromo-2-phenoxypyrimidine (4): Phenyl boronic acid (50 mg, 0.41 mmol) and  $Cs_2CO_3$  (443 mg, 1.36 mmol) were dissolved in DME (5 mL) at rt. Aqueous  $H_2O_2$  (0.04 mL, 0.8%) was added to the reaction mixture and purged with  $O_2$ . The reaction mixture was stirred for 6 h. 3-(5-Bromo-pyrimidin-2-yloxy)-3H-[1,2,3] triazolo [4,5-b]pyridine (36 mg, 0.12 mmol) was then added at rt and the reaction mixture was stirred for a further 10 h. The crude reaction mixture was then directly purified by flash chromatography to afford a white solid (49 mg, 58%). <sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz)  $\delta$  (ppm) 8.56 (s, 2H), 7.45 (m, 2H), 7.29 (m, 1H), HRMS (ES-MS) [(M+H)<sup>+</sup>]: for  $C_{10}H_3$ BrN<sub>2</sub>O 250.9814, found 250.9817. 5-Bromo-2-(2-methoxyphenoxy)-pyrimidine (5): <sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz)  $\delta$  (ppm) 8.54 (s, 2H), 7.17 (m, 2H), 7.03 (m, 2H), 3.75 (s, 3 H). HRMS (ES-MS) [(M+H)<sup>+</sup>]: for  $C_{11}H_3$ BrN<sub>2</sub>O 220.9918.

5-Bromo-2-(4-methoxyphenoxy)-pyrimidine **(7)**: <sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz)  $\delta$  (ppm) 8.56 (s, 2H), 7.12 (d, 2H, *J* = 9.3 Hz), 6.96 (d, 2H, *J* = 9.0 Hz), 3.82 (s, 3H). HRMS (ES-MS) [(M+H)<sup>+</sup>]: for C<sub>11</sub>H<sub>9</sub>BrN<sub>2</sub>O<sub>2</sub> 280.9920, found 280.9919.

S-Bromo-2-(4-methylsulfanyl-phenoxy)-pyrimidine (8): <sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz)  $\delta$  (ppm) 8.57 (s, 2H), 7.33 (d, 2H, J = 6.6 Hz), 7.13 (d, 1H, J = 6.9 Hz), 2.50 (s, 3H). HRMS (ES-MS) [(M+H)<sup>\*</sup>]: for C<sub>11</sub>H<sub>9</sub>BrN<sub>2</sub>OS 296.9692, found 296.9688.

2-(5-Bromo-pyrimidin-2-yloxy)-benzoic acid methyl ester (9): <sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz)  $\delta$  (ppm) 8.54 (s, 2H), 8.08 (dd, 1H, *J* = 1.6 Hz, *J* = 7.8 Hz), 7.63 (dt, 1H, *J* = 1.5 Hz, *J* = 7.5 Hz), 7.37 (dt, 1H, *J* = 0.9 Hz, *J* = 7.8 Hz), 7.24 (dd, 1H, *J* = 0.9 Hz, *J* = 8.1 Hz), 3.72 (s, 3H). HRMS (ES-MS) [(M+H)<sup>+</sup>]: for C<sub>12</sub>H<sub>9</sub>BrN<sub>2</sub>O<sub>3</sub> 308.9869, found 308.9871.

3-(5-Bromo-pyrimidin-2-yloxy)-benzoic acid methyl ester (10): <sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz)  $\delta$  (ppm) 8.58 (s, 2H), 7.98 (m, 1H), 7.86 (t, 1H, J = 2.4 Hz), 7.53 (t, 1H, J = 7.8 Hz), 7.39 (m, 1H), 3.92 (s, 3H). HRMS (ES-MS) [(M+H)<sup>\*</sup>]: for C<sub>12</sub>H<sub>9</sub>BrN<sub>2</sub>O<sub>3</sub> 308.9869, found 308.9875.

4-(5-Bromo-pyrimidin-2-yloxy)-benzoic acid methyl ester **(11)**: <sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz)  $\delta$  (ppm) 8.59 (s, 2H), 8.14 (d, 2H, *J* = 9.2 Hz), 7.24 (d, 2H, *J* = 8.4 Hz), 3.93 (s, 3H). HRMS (ES-MS) [(M+H)<sup>+</sup>]: for C<sub>12</sub>H<sub>9</sub>BrN<sub>2</sub>O<sub>3</sub> 308.9869, found 308.9870.

 $\begin{array}{ll} 1\mbox{-}[2\mbox{-}(5\mbox{-}Bromo\mbox{-}pyrimidin\mbox{-}2\mbox{-}yloxy)\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbox{-}phenyl\mbo$ 

1-[4-(5-Bromo-pyrimidin-2-yloxy)-phenyl]-ethanone (14): <sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz)  $\delta$  (ppm) 8.59 (s, 2H), 8.06 (d, 2H, J = 9.2 Hz), 7.29 (d, 2H, J = 8.8 Hz), 2.62 (s, 3 H). HRMS (ES-MS) [(M+H)<sup>+</sup>]: for C<sub>12</sub>H<sub>9</sub>BrN<sub>2</sub>O<sub>2</sub> 292.9919, found 292.9918.

5-Bromo-2-(pyrimidin-5-yloxy)-pyrimidine (15): <sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz)  $\delta$  (ppm) 9.13 (s, 2H), 8.73 (s, 2H), 8.62 (s, 2H). HRMS (ESI-MS) [(M+H)<sup>+</sup>]: for C<sub>8</sub>H<sub>5</sub>BrN<sub>4</sub>O 252.972, found 252.9719.

5-Bromo-2-(pyrimidin-5-yloxy)-pyrimidine (**16**): <sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz)  $\delta$  (ppm) 8.91 (d, 2H, *J* = 5.1 Hz), 8.77 (s, 2H), 6.51 (d, 2H, *J* = 5.1 Hz). MS (ESI-MS) [(M+H)<sup>+</sup>]: for C<sub>9</sub>H<sub>6</sub>BrN<sub>3</sub>O 252.06, found 252.20.

Aryl ethers 4, 7, 14 from 3, Cs<sub>2</sub>CO<sub>3</sub> and dioxygen in DME:

5-Bromo-2-phenoxypyrimidine **(4)**: This compound was synthesized from 3-(5bromo-pyrimidin-2-yloxy)-3*H*-[1,2,3] triazolo [4,5-*b*] pyridine (10 mg, 0.03 mmol), phenyl boronic acid (12 mg, 0.10 mmol), and Cs<sub>2</sub>CO<sub>3</sub> (44 mg, 0.14 mmol) in DME (1 mL). The reaction mixture was purged with dioxygen and stirred at rt for 10 h. The crude reaction mixture was then directly purified by flash chromatography to afford a white solid (2 mg, 27%). <sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz)  $\delta$  (ppm) 8.56 (s, 2H), 7.45 (m, 2H), 7.29 (m, 1H), 7.19 (d, 2H, *J* = 4.2 Hz). HRMS (ES-MS) [(M+H)<sup>+</sup>]: for C<sub>10</sub>H<sub>7</sub>BrN<sub>2</sub>O 250.9814, found 250.9817.

5-Bromo-2-(4-methoxyphenoxy)-pyrimidine (7): This compound was synthesized from 3-(5-bromo-pyrimidin-2-yloxy)-3H-[1,2,3] triazolo [4,5-b] pyridine (50 mg, 0.17 mmol), 4-methoxy phenyl boronic acid (78 mg, 0.51 mmol), and Cs<sub>2</sub>CO<sub>3</sub> (222 mg, 0.68 mmol) in DME (2.5 mL). The reaction mixture was purged with dioxygen and stirred at rt for 10 h and was purified by flash chromatography as a white solid (10 mg, 21%). <sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz)  $\delta$  (ppm) 8.56 (s, 2H), 7.12 (d, 2H, J = 9.3 Hz), 6.96 (d, 2H, J = 9.0 Hz), 3.82 (s, 3H). HRMS (ES-MS) [(M+H)<sup>+</sup>]: for C<sub>11</sub>H<sub>3</sub>BrN<sub>2</sub>O<sub>2</sub> 280.9920, found 280.9919.

1-[4-(5-Bromo-pyrimidin-2-yloxy)-phenyl]-ethanone (14): This compound was synthesized from 3-(5-bromo-pyrimidin-2-yloxy)-3H-[1,2,3] triazolo [4,5-b] pyridine (100 mg, 0.34 mmol), 4-acetyl phenyl boronic acid (220 mg, 1.34 mmol), and Cs<sub>2</sub>CO<sub>3</sub> (556 6mg, 1.74 mmol) in DME (10 mL). The reaction mixture was purged with dioxygen and stirred at rt for 10 h. The crude reaction mixture was then directly purified by flash chromatography to afford a white solid (10 mg, 10%). <sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz)  $\delta$  (ppm) 8.59 (s, 2H), 8.06 (d, 2H, J = 9.2 Hz), 7.29 (d, 2H, J = 8.8 Hz), 2.62 (s, 3H). HRMS (ES-MS) [(M+H)<sup>+</sup>]: for Cl<sub>2</sub>H<sub>2</sub>BrN<sub>2</sub>O<sub>2</sub> 292.9919, found 292.9918.

Aryl ethers 17, 18, 19 from 2, Cs<sub>2</sub>CO<sub>3</sub> in DME and aq H<sub>2</sub>O<sub>2</sub> (0.8%).

4-(*Pyrimidin-5-yloxy)quinazoline* **(17)**:: This compound was synthesized from 4-(3*H*-[1,2,3]triazolo[4,5-b]pyridin-3-yloxy)quinazoline (90 mg, 0.34 mmol). Pyrimidine boronic acid (186 mg, 1.50 mmol), and Cs<sub>2</sub>CO<sub>3</sub> (332 mg, 1.02 mmol) in DME (3 mL) and aq H<sub>2</sub>O<sub>2</sub> (0.02 mL, 0.8%) were added to the reaction mixture and stirred for 10 h. The crude reaction mixture was purified by flash chromatography as a white solid (15 mg, 20%).<sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta$  (ppm) 9.06 (s, 1H), 8.41 (s, 2H), 8.77 (s, 1H), 8.39–8.37 (m, 1H), 8.66–7.96 (m, 2H), 7.76–7.73 (m, 1H). HRMS (ES-MS) [(M+H)<sup>\*</sup>]: for C<sub>12</sub>H<sub>8</sub>N<sub>4</sub>O<sub>1</sub> 225.0771.

4-(4-Methoxyphenoxy)quinazoline (18): This compound was synthesized from 4-(3H-[1,2,3]triazolo[4,5-b]pyridin-3-yloxy)quinazoline (2, 64 mg, 0.25 mmol), 4-methoxy phenyl boronic acid (100 mg, 0.82 mmol), and Cs<sub>2</sub>CO<sub>3</sub> (346 mg, 1.06 mmol) in DME (10 mL) and aq.  $H_2O_2$  (0.08 mL, 0.8%) and was purified by flash chromatography as a white solid (21 mg, 34%). <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta$  (ppm) 8.77(s, 1H), 8.39–8.73 (m, 1H), 8.01(d, J = 2.5 Hz, 1H), 7.94–7.90 (m, 1H), 7.68–7.64 (m, 1H), 7.20–7.17 (m, 2H), 7.01–6.99 (m, 2H). HRMS (ES-MS) [(M+H)<sup>+</sup>]: for C<sub>15</sub>H<sub>12</sub>N<sub>2</sub>O<sub>2</sub> 253.0971, found 253.0964.

4-*Phenoxyquinazoline* (19): This compound was synthesized according to substrate 7 from 4-(3*H*-[1,2,3]triazolo[4,5-*b*]pyridin-3-yloxy) quinazoline (32 mg, 0.12 mmol), phenylboronic acid (50 mg, 0.41 mmol), and Cs<sub>2</sub>CO<sub>3</sub> (173 mg, 0.53 mmol) in DME (5 mL) and aq, H<sub>2</sub>O<sub>2</sub> (0.04 mL, 0.8%) and was purified by flash chromatography as a white solid (8 mg, 30%).<sup>1</sup>H NMR (DMSOd<sub>6</sub>, 400 MHz): δ (ppm) 8.85 (s, 1H), 8.26 (d, *J* = 8.2 Hz, 1H), 8.05–8.00 (m, 2H), 7.80 (t, *J* = 6.3 Hz, 1H), 7.68–7.66 (m, 2H), 7.56–7.54 (m, 3H). HRMS (ES-MS) [(M+H)<sup>\*</sup>]: for C<sub>14</sub>H<sub>10</sub>N<sub>2</sub>O<sub>1</sub> 223.0861, found 223.0862.